Hall Ticket Number:

Code No.: 12002 AS

Max. Marks: 70

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) II-Semester Advanced Supplementary Examinations, June/July-2017

Applied Physics (Civil Engg.)

Time: 3 hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

1. The spin of a particle is $2\frac{1}{2}$. What statistics does it follow?

- 2. The wave function of electrons in a one dimensional potential box of dimension of width 'a' is $\Psi_n = A \sin(n\pi/a)x$, where n = 1, 2, 3... Evaluate A by normalizing the wave function.
- 3. Define the terms lattice, basis, crystal system and unit cell.
- 4. State and discuss Meissner's effect in superconductivity.
- 5. List the failures of the free electron model.
- 6. The resistivity of Si at 300 K is 3.16x 10³ ohm m. Calculate the intrinsic carrier density. Mobilities of electrons and holes in Si are 0.14 m²/V Sec and 0.05 m²/V sec respectively.
- 7. The reactance of the inductor is 80 Ω at 500 Hz. Find its inductance.
- 8. A radio is tuned to a station whose frequency is 800 kHz. The antenna circuit contains $R = 5\Omega$ and L = 5 mH, find the capacitance.
- 9. What are the advantages in producing ultrasonic waves using magnetostriction method?
- 10. What are the limitations of Sabine's formula?

Part-B $(5 \times 10 = 50 \text{ Marks})$

	a)	A particle in an infinite square well potential within the boundaries $V = \infty, 0 < x$ = 0, 0 < x < L $= \infty, 0 > x$	[6]
		is described the wave function ψ (x). Find the Eigen values and Sketch the Eigen functions.	
	b)	Define ensemble. Differentiate between canonical and grand canonical ensembles.	[4]
12.	a)	Show that the number of Frenkel defects in a crystal of N atoms is $n = (N N')^{\frac{1}{2}} \exp (-E_f/k_BT)$. Where E_f is the energy of formation of Frenkel defect and 'N' is the number of interstitial sites in the crystal.	[6]
	b)	What is effect of isotopic mass on the critical temperature (T _c) of a superconductor? If T_c of ²⁰⁸ Pb is 7.2 K and the Tc of its isotope ²¹⁰ Pb.	[4]
13.	a)	Explain the Fermi Energy level in N-type and P-type semiconductors. Obtain expression for conductivity of intrinsic and extrinsic semiconductor in terms of mobility.	[7]
	b) Calculate resistance of Ge of $1 \times 2 \times 3$ cm ³ having conductivity of 1.25×10^{-2} mho.	[3]
14.	a)	What does root mean square (RMS) means? What do AC meters really show? Is it RMS of peak voltage? What does 6 V AC really means?	[6]
	b) A radio is tuned to (resonance) a particular station. If the antenna circuit contains $R = 5\Omega$, $L = 5$ mH, and $C = 5$ pF. Find the frequency of the station.	[4]

- a) Discuss the applications of ultrasonic waves using i) cavitation and ii) non-destructive [6] testing.
 - b) Explain how reverberation of hall is affected by i) size and ii) nature of its wall surface. [4]
- 16. a) Explain with neat diagram the Powder x-ray diffraction to evaluate lattice parameter. [6]
 - b) Compute the de Broglie wavelength of *i*) a 46gm of golf ball moving with a velocity of [4] of 30 m/s and *ii*) an electron moving with a velocity of 10⁷ m/s. By comparing the wavelengths with their respective dimensions of the objects (ball and electron) briefly explain which one will exhibit the wave nature.
- 17. Answer any two of the following:
 - a) Neatly draw the energy band diagrams for metals, insulators, intrinsic and extrinsic [5] semiconductors. Indicate the energy levels of valancy band, conduction band, Fermi level and the impurity levels wherever is appropriate.
 - b) Distinguish between resistive impedance and reactive impedance. What is the effect of [5] a reactive impedance on the current and voltage in an AC circuit and in a DC circuit?
 - c) Explain coefficient of sound absorption and illustrate a method to determine it.

[5]

ଔଔଷ୍ଟରାରେନ୍ଦ୍ରାର